本文对过去二十年来对自然语言生成(NLG)的研究提供了全面的审查,特别是与数据到文本生成和文本到文本生成深度学习方法有关,以及NLG的新应用技术。该调查旨在(a)给出关于NLG核心任务的最新综合,以及该领域采用的建筑;(b)详细介绍各种NLG任务和数据集,并提请注意NLG评估中的挑战,专注于不同的评估方法及其关系;(c)强调一些未来的强调和相对近期的研究问题,因为NLG和其他人工智能领域的协同作用而增加,例如计算机视觉,文本和计算创造力。
translated by 谷歌翻译
由于低资源语言缺乏培训数据,交叉语言机器阅读理解(XMRC)是挑战。最近的方法仅使用培训数据,以资源丰富的语言,如英语到微调大规模的跨语法预训练的语言模型。由于语言之间的巨大差异,仅由源语言微调的模型可能无法对目标语言表现良好。有趣的是,我们观察到,虽然先前方法预测的前1个结果可能经常无法达到地面真理答案,但是正确的答案通常包含在Top-K预测结果中。基于这种观察,我们开发了一种两级方法来提高模型性能。召回的第一阶段目标:我们设计一个艰难的学习(HL)算法,以最大化顶级预测包含准确答案的可能性。第二阶段专注于精确:开发了答案感知对比学习(AA-CL)机制,以了解准确答案和其他候选者之间的细差异。我们的广泛实验表明,我们的模型在两个交叉语言MRC基准数据集上显着优于一系列强大的基线。
translated by 谷歌翻译
之前在为人类运动提供合理的限制方面发挥着重要作用。以前的作品在不同情况下遵循各种范式的运动前锋,导致缺乏多功能性。在本文中,我们首先总结了先前运动的不可或缺的特性,并因此设计了一种学习多功能运动的框架,其模拟人类运动的固有概率分布。具体地,对于有效的先前表示学习,我们提出了全局方向归一化,以在原始运动数据空间中删除冗余环境信息。此外,将基于序列的基于段的频率引导引入编码阶段。然后,我们采用去噪培训方案以可学习的方式从输入运动数据中解散环境信息,以产生一致和可区分的表示。在三个不同的任务中嵌入我们的运动前嵌入我们的运动,我们进行了广泛的实验,并且定量和定性结果均表现出我们之前运动的多功能性和有效性。我们的型号和代码可在https://github.com/jchenxu/human-motion-porion -prior上获得。
translated by 谷歌翻译
Brain midline shift (MLS) is one of the most critical factors to be considered for clinical diagnosis and treatment decision-making for intracranial hemorrhage. Existing computational methods on MLS quantification not only require intensive labeling in millimeter-level measurement but also suffer from poor performance due to their dependence on specific landmarks or simplified anatomical assumptions. In this paper, we propose a novel semi-supervised framework to accurately measure the scale of MLS from head CT scans. We formulate the MLS measurement task as a deformation estimation problem and solve it using a few MLS slices with sparse labels. Meanwhile, with the help of diffusion models, we are able to use a great number of unlabeled MLS data and 2793 non-MLS cases for representation learning and regularization. The extracted representation reflects how the image is different from a non-MLS image and regularization serves an important role in the sparse-to-dense refinement of the deformation field. Our experiment on a real clinical brain hemorrhage dataset has achieved state-of-the-art performance and can generate interpretable deformation fields.
translated by 谷歌翻译
Current mainstream object detection methods for large aerial images usually divide large images into patches and then exhaustively detect the objects of interest on all patches, no matter whether there exist objects or not. This paradigm, although effective, is inefficient because the detectors have to go through all patches, severely hindering the inference speed. This paper presents an Objectness Activation Network (OAN) to help detectors focus on fewer patches but achieve more efficient inference and more accurate results, enabling a simple and effective solution to object detection in large images. In brief, OAN is a light fully-convolutional network for judging whether each patch contains objects or not, which can be easily integrated into many object detectors and jointly trained with them end-to-end. We extensively evaluate our OAN with five advanced detectors. Using OAN, all five detectors acquire more than 30.0% speed-up on three large-scale aerial image datasets, meanwhile with consistent accuracy improvements. On extremely large Gaofen-2 images (29200$\times$27620 pixels), our OAN improves the detection speed by 70.5%. Moreover, we extend our OAN to driving-scene object detection and 4K video object detection, boosting the detection speed by 112.1% and 75.0%, respectively, without sacrificing the accuracy. Code is available at https://github.com/Ranchosky/OAN.
translated by 谷歌翻译
We study the problem of semantic segmentation calibration. For image classification, lots of existing solutions are proposed to alleviate model miscalibration of confidence. However, to date, confidence calibration research on semantic segmentation is still limited. We provide a systematic study on the calibration of semantic segmentation models and propose a simple yet effective approach. First, we find that model capacity, crop size, multi-scale testing, and prediction correctness have impact on calibration. Among them, prediction correctness, especially misprediction, is more important to miscalibration due to over-confidence. Next, we propose a simple, unifying, and effective approach, namely selective scaling, by separating correct/incorrect prediction for scaling and more focusing on misprediction logit smoothing. Then, we study popular existing calibration methods and compare them with selective scaling on semantic segmentation calibration. We conduct extensive experiments with a variety of benchmarks on both in-domain and domain-shift calibration, and show that selective scaling consistently outperforms other methods.
translated by 谷歌翻译
In this paper, we propose a large-scale language pre-training for text GENeration using dIffusion modEl, which is named GENIE. GENIE is a pre-training sequence-to-sequence text generation model which combines Transformer and diffusion. The diffusion model accepts the latent information from the encoder, which is used to guide the denoising of the current time step. After multiple such denoise iterations, the diffusion model can restore the Gaussian noise to the diverse output text which is controlled by the input text. Moreover, such architecture design also allows us to adopt large scale pre-training on the GENIE. We propose a novel pre-training method named continuous paragraph denoise based on the characteristics of the diffusion model. Extensive experiments on the XSum, CNN/DailyMail, and Gigaword benchmarks shows that GENIE can achieves comparable performance with various strong baselines, especially after pre-training, the generation quality of GENIE is greatly improved. We have also conduct a lot of experiments on the generation diversity and parameter impact of GENIE. The code for GENIE will be made publicly available.
translated by 谷歌翻译
Developing autonomous vehicles (AVs) helps improve the road safety and traffic efficiency of intelligent transportation systems (ITS). Accurately predicting the trajectories of traffic participants is essential to the decision-making and motion planning of AVs in interactive scenarios. Recently, learning-based trajectory predictors have shown state-of-the-art performance in highway or urban areas. However, most existing learning-based models trained with fixed datasets may perform poorly in continuously changing scenarios. Specifically, they may not perform well in learned scenarios after learning the new one. This phenomenon is called "catastrophic forgetting". Few studies investigate trajectory predictions in continuous scenarios, where catastrophic forgetting may happen. To handle this problem, first, a novel continual learning (CL) approach for vehicle trajectory prediction is proposed in this paper. Then, inspired by brain science, a dynamic memory mechanism is developed by utilizing the measurement of traffic divergence between scenarios, which balances the performance and training efficiency of the proposed CL approach. Finally, datasets collected from different locations are used to design continual training and testing methods in experiments. Experimental results show that the proposed approach achieves consistently high prediction accuracy in continuous scenarios without re-training, which mitigates catastrophic forgetting compared to non-CL approaches. The implementation of the proposed approach is publicly available at https://github.com/BIT-Jack/D-GSM
translated by 谷歌翻译
Data compression is becoming critical for storing scientific data because many scientific applications need to store large amounts of data and post process this data for scientific discovery. Unlike image and video compression algorithms that limit errors to primary data, scientists require compression techniques that accurately preserve derived quantities of interest (QoIs). This paper presents a physics-informed compression technique implemented as an end-to-end, scalable, GPU-based pipeline for data compression that addresses this requirement. Our hybrid compression technique combines machine learning techniques and standard compression methods. Specifically, we combine an autoencoder, an error-bounded lossy compressor to provide guarantees on raw data error, and a constraint satisfaction post-processing step to preserve the QoIs within a minimal error (generally less than floating point error). The effectiveness of the data compression pipeline is demonstrated by compressing nuclear fusion simulation data generated by a large-scale fusion code, XGC, which produces hundreds of terabytes of data in a single day. Our approach works within the ADIOS framework and results in compression by a factor of more than 150 while requiring only a few percent of the computational resources necessary for generating the data, making the overall approach highly effective for practical scenarios.
translated by 谷歌翻译
Inspired by the recent success of Transformers for Natural Language Processing and vision Transformer for Computer Vision, many researchers in the medical imaging community have flocked to Transformer-based networks for various main stream medical tasks such as classification, segmentation, and estimation. In this study, we analyze, two recently published Transformer-based network architectures for the task of multimodal head-and-tumor segmentation and compare their performance to the de facto standard 3D segmentation network - the nnU-Net. Our results showed that modeling long-range dependencies may be helpful in cases where large structures are present and/or large field of view is needed. However, for small structures such as head-and-neck tumor, the convolution-based U-Net architecture seemed to perform well, especially when training dataset is small and computational resource is limited.
translated by 谷歌翻译